A Problem Solving Model for Collaborative Agents

James Allen
Dept. of Computer Science
University of Rochester
Rochester, New York, USA

james@cs.rochester.edu

ABSTRACT

This paper describes a model of problem solving for use in
collaborative agents. It is intended as a practical model for
use in implemented systems, rather than a study of the the-
oretical underpinnings of collaborative action. The model
is based on our experience in building a series of interac-
tive systems in different domains, including route planning,
emergency management, and medical advising. It is cur-
rently being used in an implemented, end-to- end spoken di-
alogue system in which the system assists a person in man-
aging their medications. While we are primarily focussed
on human-machine collaboration, we believe that the model
will equally well apply to interactions between sophisticated
software agents that need to coordinate their activities.

Categoriesand Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Natural Language; H.5.2 [Information Inter-
faces and Presentation]|: User Interfaces—Theory and
Methods

Keywords

Conversational agents, interface agents, coordinating multi-
ple agents and activities, intention recognition

1. INTRODUCTION

One of the most general models for interaction between
humans and autonomous agents is based on natural human-
human dialogue. For humans, this is an interface that re-
quires no learning, and provides maximum flexibility and
generality. To build such an interface on the autonomous
agent side, however, is a formidable undertaking. We have
been building prototypes of such systems for many years,
focusing on limited problem solving tasks. Our approach
involves constructing a dialogue system that serves as the
interface between the human and the back-end agents. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 02, July 15-19, 2002, Bologna, Italy.

Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Nate Blaylock
Dept. of Computer Science
University of Rochester
Rochester, New York, USA

blaylock@cs.rochester.edu ferguson@cs.rochester.edu

George Ferguson
Dept. of Computer Science
University of Rochester
Rochester, New York, USA

goal is to insulate the human from the complexities of man-
aging and understanding agent-based systems, while insu-
lating the back-end agents from having to understanding
natural language dialogue. To be effective in a range of
situations, the dialogue agent must support contextually-
dependent interpretation of language and be able to map
linguistically specified goals into concrete tasking of back-
end agents.

We believe that a key for enabling such interaction models
is the development of a rich model of collaborative problem
solving. This model is needed for two distinct purposes:
(1) to enable contextual interpretation of language (i.e., in-
tention recognition); and (2) to provide a rich protocol for
communication between the autonomous agents that com-
prise the dialogue system. Thus the dialogue system appears
to the human as an intelligent collaborative assistant agent,
and is itself comprised of autonomous agents.

While work has been done on general theoretical frame-
works for collaborative interaction [8, 3, 11], these proposals
have generally not specified the details of what such mod-
els would look like. We believe that our model is compati-
ble with the SharedPlans formalism [8, 9, 11]. In fact, one
way of looking at our model is as an elaboration of some of
the key operators (such as Elaborate_Group, or Lochbaum’s
communicate recipe) in the SharedPlans framework. In our
own previous work [6, 1], we have described the beginnings
of practical models but these have not been very precisely
specified or complete. In this paper, we sketch a compre-
hensive model that provides a detailed analysis of a wide
range of collaborative problem solving situations that can
arise. This model is based on our experience in building
collaborative problem solving agents in a range of different
domains. In particular, collaborative agents (both human
and autonomous) need to have the capability to:

1. Discuss and negotiate goals;

2. Discuss options and decide on courses of action, in-
cluding assigning different parts of a task to different
agents;

3. Discuss limitations and problems with the current course
of action, and negotiate modifications;

4. Assess the current situation and explore possible fu-
ture eventualities;

5. Discuss and determine resource allocation;

6. Discuss and negotiate initiative in the interactions;

Interaction Communicative Acts
Initiate Realization R Suggest
Complete CPS Act Ask
Reject — Inform
Continue Recognition
Collaborative
Problem Solving
c-Adopt c-Objective
c-Defer c-Action Task Models
c-Evaluate c-Resource " "
I Kitchen Designer

c-ldentify c-Situation

I Medication Advisor

Problem Solving Evacuation Planner
Adopt Objective . Objective: evacuate city, rescue people, ...
Defer Action Task/Domain | Action: plan operation, choose route, ...
Evaluate Resource Specialization | Resource: vehicles, routes, ...
Identify Situation Situation: vehicle locations, road status, ...
Internal State
Add/Modify/Delete Intention

Prove/Lookup/Query ~ Belief

Figure 1: Collaborative problem solving model

7. Perform parts of the task, and report to others to up-
date shared knowledge of the situation.

Although our focus is on language-based interaction, it is our
belief that these capabilities are required in any sufficiently
complex (realistic, flexible) agent-based system.

2. OVERVIEW OF THE MODEL

Our model of collaborative problem solving is shown in
Figure 1. At the heart of the model is the problem solving
level, which describes how a single agent solves problems.
For example, an agent might adopt an obligation, or might
evaluate the likelihood that a certain action will achieve that
objective. This level is based on a fairly standard model of
agent behavior, that we will describe in more detail shortly.*

The problem solving level is specialized to a particular
task and domain by a task model. The types of domains we
have explored include designing a kitchen, providing medical
advice, assessing damage from a natural disaster, planning
emergency services, and so on. The task model describes
how to perform these tasks, such as what possible objectives
are, how objectives are (or might be) related, what resources
are available, and how to perform specific problem solving
actions such as evaluating a course of action.

For an isolated autonomous agent, these two levels suffice
to describe its behavior, including the planning and execu-
tion of task-level actions. For collaborative activity, how-
ever, we need more.

The collaborative problem solving level builds on
the single-agent problem solving level. The collaborative
problem solving actions parallel the single-agent ones, ex-
cept that they are joint actions involving jointly understood
objects. For example, the agents can jointly adopt an inten-
tion (making it a joint intention), or they can jointly identify
a relevant resource, and so on.

!Underlying the problem solving level is the representation
of the agent’s internal state, for example its current beliefs
and intentions. The details of how these are represented are
not important for understanding the collaborative problem
solving model, however.

Finally, an agent cannot simply perform a collaborative
action by itself. The interaction level consists of actions
performed by individuals in order to perform their part of
collaborative problem solving acts. Thus, for example, one
agent may initiate a collaborative act to adopt a joint in-
tention, and another may complete the collaborative act by
agreeing to adopt the intention.

This paper proceeds as follows. First, we describe the
collaborative problem solving model in more detail, starting
with a review of some underlying concepts, moving on to
the single-agent problem solving level, and finally describ-
ing the collaborative problem solving and interaction levels.
The emphasis is on the information maintained at each level
and its use during collaborative problem solving. We then
present a detailed example of the model in action, drawn
from a medical advisor domain that we are using for our
prototype implementation. We conclude with a few com-
ments about open issues and future work.

3. BASIC CONCEPTS

All of the levels in our model involve a core set of concepts
related to planning and acting. Many of these concepts have
been used in the planning literature for years, and we only
informally describe them in this section. The application of
the concepts to modeling collaborative interaction is what
is important for present purposes.

3.1 Situations

We start with a fairly standard notion of situation as in
the situation calculus [12]—a situation is a snapshot of the
world at a particular point in time (or hypothetical point
in time when planning into the future). While situations
are a complete state of the world at a certain time, our
knowledge of a situation is necessarily incomplete except in
the most simple cases (like traditional blocks world planning
systems). Also note that a situation might include an agent’s
beliefs about the past and the future, and so might entail
knowledge about the world far beyond what is immediately
true.

3.2 Atomic Actions

Also as in the situation calculus, actions are formalized
as functions from one situation to another. Thus, perform-
ing an action in one situation produces a new situation. Of
course, generally we do not know the actual situation we
are in, so typically knowledge about actions is character-
ized by statements that if some precondition of an action
is true in some situation, then some effect of it will be true
in the situation resulting from the action. Note that unlike
the standard situation calculus, however, we take actions to
be extended in time and allow complex simultaneous and
overlapping actions.

3.3 Recipes

A specification of system behavior is often called a plan,
or recipe [13]. We will use the term “recipe” here as the
notion of plan has been overused and so is ambiguous. A
very simple form of recipe is a fixed sequence of actions
to perform, much like those built by traditional planning
systems. The recipes found in cookbooks often aspire to this
level of simplicity but typically are not as straightforward.
More generally, recipes capture complex learned behavior
and guide an agent towards a goal through a wide range

of possible conditions and ranges of possible results from
previous action.

For our work, we do not care about the specific form of
what a recipe is, or insist that different agents have the same
recipes. Rather, a recipe is a way of deciding what to do
next. More formally, a recipe is a function from situations
to actions, where the action is the next thing to do according
to the recipe.

Note that we need some special “actions” to make this
work. First, we must allow the action of doing nothing or
waiting for some period of time, as this might be the best
thing to do for some recipes. We also need to allow the
possibility that a recipe may not specify what to do next
in certain situations. To formalize this, we need to make
the recipe function a partial function, or introduce a special
“failure” value. Finally, we need to allow actions to be plan-
ning actions—i.e., it may be that the best thing to do is to
set a subgoal and do some more planning before any further
physical action.

3.4 Objectives

Our notion of objective is similar to some uses of the
term “goal.” But the term goal is used is different ways in
the literature: goals are sometimes the intentions driving
an agent’s behavior, at other times they are the input to a
planning process, and sometimes they are simply the main
effects of a recipe. Goals are sometimes considered to be
states of the world to attain (e.g., the goal is a situation
where block A is on block B), or sometimes an action that
must be performed (e.g., the goal is to open the door).

We will try to avoid all this ambiguity by not using the
word goal any further. An objective is an intention that
is driving our current behavior. Objectives are expressed in
the form of abstract actions, such as winning the lottery, or
getting block A onto block B. Objectives are not just any
actions. They are actions that are defined in terms of their
effects, and cannot be executed directly. To accomplish ob-
jectives, we need to choose or build a recipe that, if followed,
leads to a state in which effects of the objective hold.

3.5 Resources

The final key concept in the abstract model is that of a
resource. A resource is a object that is used during the
execution of a recipe. Resources might be consumable (i.e.,
cease to exist in their prior form) as a result of the recipe
(e.g., as ingredients are consumed when making a cake), or
might be reusable (e.g., as a hammer is used to drive in
a nail). In a traditional planning model, resources are the
objects that are used to bind the variables in the plan and, in
fact, many applications of planning are essentially resource
allocation problems.

4. PROBLEM SOLVING

Once we have the concepts defined in the last section, we
can now give an quick overview of our model of a single
agent’s problem solving behavior. Just as task-level actions
affect the state of the world, problem-solving actions affect
the cognitive state of the agent, which we represent (for pur-
poses of this paper) as the problem solving (PS) state.
The problem solving state consists of the agents commit-
ments towards objectives, the recipes for achieving those
objectives, the resources used in those recipes, and so on.

Adopt

/\ Select

Adopted \
DeferL

Abandon

™S

k{elease

Abandoned Completed

Figure 2: Life cycle of an intention

The PS state must contain at least the following informa-
tion:

1. The current situation: what the agent believes (or as-
sumes) to be true as a basis for acting, including what
resources are available;

2. Intended objectives: a forest of objectives that the
agent has adopted, although not all are necessarily
motivating its current action. Each tree in the for-
est captures a subobjective hierarchy for a particular
root objective;

3. Active objective(s): the intended objective(s) that is
(are) currently motivating the agent’s action; An ob-
jective tree that includes an active objective is an ac-
tive objective tree;

4. Intended recipes: the recipes and resources that the
agent has chosen for each of the intended objectives;

5. Recipe library: a set of recipes indexed by objective
and situation types. The library need not be static and
may be expanded by planning, learning, adaptation,
etc.

An agent’s problem solving activity involves exploring the
current situation, adopting objectives, deciding on courses of
action and resources to use, performing actions, and using
the results of actions to further modify its objectives and
future actions. The problem solving actions (see Figure 1)
are divided into two classes, one concerned with intention
and commitment and one concerned with knowledge and
reasoning.

4.1 PSActsReatingto Commitment

In our model of agent behavior (similar to [7, 15]), an
agent is driven by its intentions, in the form of objectives,
recipes, and resource uses to which it is committed. Inten-
tions move through a life cycle shown in Figure 2.

In order to act, an agent must form intentions by means
of a commitment act that we call Adopt. For example, an
agent might adopt a particular recipe for a certain objec-
tive, say to plan a trip by using a recipe to call a travel
agent. If they change their mind, they may drop the com-
mitment using a act we call Abandon. For instance, the
agent may change their mind, abandon the recipe to call the

travel agent and adopt a recipe to book a ticket on the web.
Similarly, an agent may adopt or abandon objectives, and
adopt and abandon commitments to use certain resources.

An agent may have several different objectives that it is
committed to, and even with respect to one objective, there
may be several sub-objectives that could be chosen to drive
the agent’s action. The action of choosing the objective(s)
to motivate the next behavior is called Select. Once an
objective is selected, the agent may perform reasoning to
elaborate on its associated recipe, or to evaluate an action
that that recipe suggests, and may eventually select an ac-
tion to perform. If an agent’s priorities change, it may De-
fer the objective or action, leaving it as an intention to be
addressed later. Finally, when an agent believes that an
objective has been achieved, it may Release the objective,
thereby removing it from its set of intentions.

4.2 PSActsReating to Reasoning

Before committing, an agent will typically perform some
reasoning. One of the key operations is to determine what
options are available, which we call Identify. For exam-
ple, an agent may identify a possible recipe for achieving
some objective, or identify certain resources that are avail-
able. They may even identify possible goals to pursue and
consider them before making any commitment. Once an op-
tion is identified, the agent may Evaluate it relative to its
purpose. For instance, it might evaluate a recipe to see how
well it might accomplish its associated objective, or evaluate
an objective to see if it is worthwhile, or evaluate a resource
or action to see how well it serves a particular recipe. In ad-
dition, an agent may choose to Modify a certain objective,
recipe or resource to produce a another that then could be
evaluated.

In addition to reasoning about possible goals and actions,
an agent may also reason about its current situation. Situa-
tions may be identified by exploring them further, and may
be evaluated to see how desirable the current (or expected)
situation is and whether it should plan to change it. Agents
that act and do little planning would only care about the
current situation they are in, and all activity would be tied
to that situation. More complex agents, however, could do
planning in hypothetical situations, or want to act based on
certain assumptions.

4.3 Problem Solving Behavior

With these elements of the problem solving model in place,
we can describe how an agent solves problems. It is con-
venient to present this activity as occurring in a series of
phases. In practice, an agent may short circuit phases, or
return to prior phases to reconsider their commitments at
any time.

1. Determining the Objective: An agent may at any time
reconsider the objectives it has, adopt new ones, aban-
don old ones, and otherwise modify and adjust them.
Of course effective agents will not spend too much time
reconsidering and evaluating their objectives, but will
spend their effort in pursuing an objective. To do this,
they must first select one or more objectives to pursue.
These are the active objectives.

2. Determining the Recipe: Given an active objective, an
agent must then determine a recipe to follow that may

achieve the objective. It may be that a recipe has al-
ready been used for some time to determine the agent’s
actions in pursuing the objective, and the agent may
simply invoke the recipe once again in the current sit-
uation to determine what to do next. But the agent
might also consider switching to another recipe, refin-
ing an existing recipe, or actually building a new recipe
for this objective. In these latter cases, the next ac-
tion the agent does is a planning action that results in
a modified (or new) recipe for the objective.

3. Using the Selected Recipe: Given a selected recipe, the
agent can then identify the next action to perform.
If the recipe returns a sub-objective, then the agent
needs to restart the process of evaluating objectives
and choosing or constructing recipes. If the recipe in-
dicates an atomic action, the agent can evaluate the
desirability of the proposed action, and if it seems rea-
sonable, perform the action. At that point, the situa-
tion has changed and the process starts again.

To implement such a problem solving agent, we would
need to specify strategies for when objectives, recipes and
proposed actions are evaluated and reconsidered, versus how
often the current objective, recipe or proposed action is
just taken without consideration. Agents that performed
more evaluation and deliberation would be more careful and
might be able to react better to changing situations, whereas
agents that do less evaluation would probably be more re-
sponsive but also more brittle. The specifics of these strate-
gies are not the focus of this paper.

5. COLLABORATIVEPROBLEM SOLVING

We now turn to the central issue of collaborative prob-
lem solving. When two agents collaborate to achieve goals,
they must coordinate their individual actions. To mirror the
development at the problem solving level, the collaborative
problem solving level (see Figure 1) operates on the col-
laborative problem solving (CPS) state, which captures the
joint objectives, the recipes jointly chosen to achieve those
objectives, the resources jointly chosen for the recipes, and
SO on.

The collaborative problem solving model must serve two
critical purposes. First it must provide the structure that
enables and drives the interactions between the agents as
they decide on joint objectives, actions and behavior. In so
doing, it provides the framework for intention recognition,
and it provides the constraints that force agents to inter-
act in ways that maintain the collaborative problem solving
state. Second, it must provide the connection between the
joint intentions and the individual actions that an agent per-
forms as part of the joint plan, while still allowing an agent
to have other individual objectives of its own.

While we talk of shared objectives, intended actions and
resources, we do not want to require that agents have the
same library of recipes to choose from. This seems too strong
a constraint to place on autonomous agents. We assume
only that the agents mutually agree on the meaning of ex-
pressions that describe goals and actions. For example, they
might both understand what the action of taking a trip en-
tails. The specific recipes each has to accomplish this action,
however, may be quite different. Their recipes may accom-
plish subgoals in different orders for instance (one may book

a hotel first, then get a air ticket, where the other might re-
verse the order). They might break the task down into differ-
ent subgoals (e.g., one may call a travel agent and book flight
and hotel simultaneously, while the other might book flights
with an agent and find hotels on the web). And for any
subgoal, they might pick different actions (e.g., one might
choose a flight that minimizes cost, whereas the other might
minimize travel time). To collaborate, the agents must agree
to some level of detail on a new abstract joint recipe that
both can live with. The joint recipe needs be refined no fur-
ther in places where the two agents agree that one agent is
responsible for achieving a sub-objective.

Establishing part of the collaborative problem solving state
requires an agreement between the agents. One agent will
propose an objective, recipe, or resource, and the other can
accept , reject or produce a counterproposal or request fur-
ther information. This is the level that captures the agent
interactions. To communicate, the agent receiving a mes-
sage must be able to identify what CPS act was intended,
and then generates responses that are appropriate to that
intention. In agent-communication languages between pro-
grams, the collaborative act would be explicit. In human-
agent communication based on natural language, a complex
intention recognition process may be required to map the
interaction to the intended CPS act. This will be described
in further detail in the Interaction section below, after the
abstract collaborative model is described.

5.1 Collaborative Problem Solving Acts

As afirst cut, the collaborative problem solving level looks
just like the PS level, except that all acts are joint between
the collaborating agents. We will name these CPS acts us-
ing a convention that just applies a prefix of “c-”. Thus
the c-adopt-objective act is the action of the agents jointly
adopting a joint objective.

While we can model an individual agent adopting an in-
dividual objective as a primitive act in our model at the PS
level, there is no corresponding primitive act for two agents
jointly adopting a goal. This would require some sort of
mind synchronization that it not possible. We agree with
researchers such as Grosz and Sidner [8] and Cohen and
Levesque [3] in that joint actions must be composed out of
individual actions. There remains a meaningful level of anal-
ysis that corresponds to the PS level model if we view the
CPS acts as complex acts, i.e., objectives, that the agents
recognize and use to coordinate their individual actions. The
constraints on rational behavior that an agent uses at the
PS level have their correlates at the collaborative PS level,
and these inform the intention recognition and planning be-
havior of the agents as they coordinate their activities. For
instance, a rational individual agent would not form an ob-
jective to accomplish some state if it believed that the state
currently holds (or will hold in the future at the desired
time). Likewise, collaborating individual agents would not
form a collaborative objective to achieve a state that they
jointly believe will hold at the (jointly) desired time. The
analysis of the behavior at this abstract level provides a sim-
ple and intuitive set of constraints on behavior that would
be hard to express at the interaction action level.

5.2 Thelnteraction Leve

The interaction level provides the connection between the
communicative acts (i.e., speech acts) that the agents per-

form, such as requesting, informing, warning, and promis-
ing, and the collaborative problem solving acts they jointly
perform. In other words, it deals with the individual ac-
tions that agents perform in order to engage in collabora-
tive problem solving. All the acts at this level take the
form of some operator applying to some CPS act. For in-
stance, an agent can Initiate a collaborative act by mak-
ing a proposal and the other agent can Complete the act
(by accepting it) or Reject it (in which case the CPS act
fails because of lack of “buy in” by the other agent). In
more complex interactions, an agent may Continue a CPS
act by performing clarification requests, elaborations, mod-
ifications or counter-proposals. The interaction-level acts
we propose here are similar to Traum’s [17] grounding act
model, which is not surprising as grounding is also a form
of collaborative action.

From a single agent’s perspective, when it is performing
an interaction act (say, initiating adoption of an joint objec-
tive), it must plan some communicative act (say, suggesting
to the other agent that it be done) and then perform (or re-
alize) it. On the other side of the coin, when one agent per-
forms a communicative act, the other agent must recognize
what interaction act was intended by the performer. Identi-
fying the intended interaction acts is a critical part of the in-
tention recognition process, and is essential if the agents are
to maintain the collaborative problem-solving state. For in-
stance, consider a kitchen design domain in which two agents
collaborative to design and build a kitchen. The utterance
“Can we put a gas stove beside the refrigerator” could be
said in order to (1) ask a general question about acceptable
practice in kitchen design; (2) propose adding a stove to the
current design; or (3) propose modifying the current design
(say by using a gas stove rather than an electric one). Each
of these interpretations requires a very different response
from the hearer and, more importantly, results in a different
situation for interpreting all subsequent utterances. Fach
one of these interpretations corresponds to a different col-
laborative problem solving act. If we can identify the correct
act, we then have a chance of responding appropriately and
maintaining the correct context for subsequent utterances.

We should note that the interaction level is not just re-
quired for natural language interaction. In other modali-
ties, the same processes must occur (for example, the user
initiates a joint action by clicking a button, and the sys-
tem completes it by computing and displaying a value). In
standard agent communication languages, these interaction
level actions are generally explicit in the messages exchanged
between agents, thereby eliminating the need to recognize
them (although not to the need to understand and perform
them oneself).

5.3 Examples

To put this all together, consider some typical but con-
structed examples of interactions. These examples are moti-
vated by interactions we have observed in a medical advisor
domain in which the system acts to help a person manage
their medications. These examples are meant to fit together
to form a constructed dialogue that illustrates a number of
points about the CPS level analysis.

The simplest collaborative acts consist of an initiate-complete

pair. For example, here is a simple c-identify of a situation:

U: Where are my pills? (1)
S: In the kitchen (2)

Utterance (1) is a Wh-question that initiates the c-identify-
situation act, and utterance (2) answers the question and
completes the CPS act.? When utterance (2) is done, the
two agents will have jointly performed the c-identify-situation
action.

Utterances may introduce multiple collaborative acts at
one time, and these may be completed by different acts. For
instance:

S: It’s time to take an aspirin (3)
U: Okay (4)
U: [Takes the aspirin] (5)

Utterance (3) is a suggestion that U take an aspirin, which
initiates both a c-adopt-objective (to intend to take medica-
tion currently due) and a c-select-action (to take an aspirin).
Utterance (4) completes the c-adopt action and establishes
the joint objective. Action (5) completes the c-select action
by means of U performing the PS-level act select on the
action, resulting in the action being performed.

Many more complex interactions are possible as well. For
instance:

U: What should we do now? (6)
S: Let’s plan your medication for the day (7)
U: Okay (8)

Utterance (6) is a question that initiates a c-adopt-objective,
utterance (7) continues this act by answering the question
with a suggestion, and utterance (8) completes the act (thus
establishing the joint objective). Note that the objective
agreed upon is itself a collaborative problem solving act—
they have established a joint objective to perform a c-adopt
action for some as yet unspecified recipe. This could then
lead to pursuing a sub-objective such as creating a recipe as
in the following interaction:

S: You could take your celebrex at noon. (
U: Will that interfere with my lunch date (1
S: No. (1
U: OK. I'll do that (1

Utterance (9) is a suggestion that initiates a c-identify-

recipe and continues the previously established c-adopt-objective

action. Utterance (10) completes the c-identify of the recipe
(by grounding the suggestion), continues the c-adopt action,
and initiates a c-evaluate of the recipe by exploring a pos-
sible problem with the suggested action. Utterance (11)
completes the c-evaluate act by answering the question, and
utterance (13) then completes the c-adopt act by agreeing
to the recipe initially suggested in (9).

6. EXTENDED EXAMPLE

To better illustrate the complexity of even fairly simple
collaborative problem solving, the following is an example
of a session with a prototype Medication Advisor system
under development at Rochester [5]. The Medication Ad-
visor is designed to help people manage their prescription
medication regimes—a serious real-world problem that has
a significant impact on people’s health.

2Note that we are ignoring grounding issues in this paper.
In a dialogue system, the CPS act is not actually completed
until the answer to the question is grounded by U, say by
the utterance such as “OK” or “thanks”.

Interpretation

Problem-Solving e
Acts régogni:
;Zeq' Generation

~
Task Task s ~

M < Execution > ~
a.léger Requests N ~

Behavior
‘ Scheduler) -

Task- and Domain-specific
Knowledge Sources

Exogenous Event Sources
Figure 3: TRIPS collaborative system architecture
(from [1])

To follow the problem solving, we need to understand
something of the architecture of the system. The Medica-
tion Advisor is an application of the TRIPS spoken dialogue
system [6], whose architecture is shown in Figure 3. As de-
scribed in [1], the main components of the system as regards
problem solving are as follows:

e The Interpretation Manager (IM), which maintains the
discourse context and recognizes user intention from
their utterances;

e The Behavioral Agent (BA), which manages system
problem solving obligations and drives system behav-
ior;

e The Task Manager (TM), which maintains the collab-
orative problem solving state and supports both inter-
pretation and execution with task- and domain-specific
knowledge; and

e The Generation Manager (GM), which coordinates the
generation of spoken speech and multimodal output,
among other functions.

This system is a fully implemented, end-to-end speech-driven
dialogue system, although for this session some aspects of
the problem-solving model were not fully implemented. For
brevity, we have suppressed most of the detail of the actual
message traffic between components of the system, focusing
solely on the interactions within the collaborative problem
solving model. Utterances are labeled by the agent and a
number indicating the sequence of speaker turns.
The user starts by asking a question:

U: Can I take an aspirin? (1)

The Interpretation Manager asks the Task Manager to in-
terpret the utterance in the current problem solving con-
text. The Task Manager replies that the utterance looks
like an initiate of a c-evaluate-action. That is, the user

seems to be initiating a collaborative evaluation of the ac-
tion of taking aspirin. The Interpretation Manager uses this
result, together with other interpretation steps, and broad-
casts that as the system’s understanding of what the user
has just done.

When the Task Manager receives this message, it can up-
date its state to include the fact that, yes, the user has ini-
tiated a new collaborative act. Meanwhile, the Behavioral
Agent also receives the notification. It decides, based on its
current obligations, that the system should attempt to com-
plete the action. To do this, it asks the Task Manager to
perform the (non-collaborative) act of evaluating an action.
The Task Manager does this by following a recipe for evalu-
ating that type of action, which involves querying databases
for what medications the user is taking and whether any of
those interact with aspirin. It turns out that the there is an
interaction, so the evaluation is negative. The Behavioral
Agent, upon receipt of the result of the evaluation, requests
that the Generation Manager perform the communicative
act inform (with the evaluation results) in order to realize
the interaction act of completing the user’s c-evaluate-action
CPS act.

The Generation Manager determines what to say:

S: No, you are taking celebrex and celebrex (2)
interacts with aspirin.

Once the speech has been generated, the Generation Man-

ager can broadcast to the rest of the system that the inform

act is done. Note that the interaction act (the complete) is

not yet done, since this depends on the user having under-

stood the system’s utterance (i.e., on its being grounded).
The user responds with:

U: Oh. (3)

The Interpretation Manager takes this as grounding its ut-
terance (2), since it does not indicate any lack of under-
standing. This fact is broadcast to the rest of the system.
Once the system’s utterance is grounded, the Generation
Manager can announce that the interaction act is done. As
there is no additional problem solving content in the user’s
utterance (3), the system does not do anything in response.
The user continues with:

U: Could Celebrex cause headaches? (4)

As with (1), the IM asks the TM to interpret the utterance
in the current problem solving state. Note that the IM must
explicitly indicate that this interpretation should be relative
to the context in which the system’s interaction act (the
complete of the c-evaluate-action) is done. This is just one
example of the explicit synchronization necessary in order
to implement the collaborative problem solving model in a
distributed system.

The TM answers that the utterance (4) looks like an ini-
tiate of a c-identify-situation (as to whether celebrex causes
headaches). With this choice of an interpretation, the Task
Manager can update its model of what the user is doing.
Meanwhile, the Behavioral Agent decides that the system
should perform its part of the collaborative action in order
to complete it. The TM does the identify-situation and
responds that it is not the case that celebrex can cause
headaches. The BA passes this answer to the GM, request-
ing that it inform the user in order to complete the collab-
orative act. This results in the following system utterance:

S: No, headaches are not an expected side-effect (5)
of celebrex.

And again, the inform is done once the speech has been
produced.

Meanwhile, the TM, in the process of updating its state
based on the user having initiated the c-identify-situation
regarding celebrex causing headache, has performed some
plan recognition and thinks it is likely that the user may be
trying to cure their headache. Note that up to this point, the
user has not said anything about having a headache—this
is purely an inference based on task and domain knowledge.
The TM reports that this is a problem which should be
resolved, although it leaves it to the BA to prioritize the
system’s objectives and decide what to do.

In this case, the BA decides to take initiative and requests
that the TM suggest what to do. The TM responds that
the system should initiate a c-identify-situation regarding
whether the user has a headache. The BA sends this to the
GM, resulting the following utterance:

S: Do you have a headache? (6)

Once the speech has been output, the GM announces that
the ask is done. At this point both interaction acts (“headaches
are not a side-effect of celebrex” and “do you have a headache”)
are awaiting grounding, and the question is awaiting a re-
sponse from the user. When the user answers with:

U: Yes. (7)

Both system utterances (5) and (6) are grounded, so both
pending interactions acts are marked as completed, and the
system proceeds to interpret the user’s utterance (7) in the
resulting context.

The dialogue for another continues for another fifteen ut-
terances as the system addresses the user’s headache and
then supports them with several other aspects of their med-
ication regime. Unfortunately, space precludes an extended
presentation.

7. RELATED WORK

As noted above, work has been done on general theo-
retical frameworks for collaborative interaction [3, 9, 11].
However, the focus of these models was more specifying the
mental details (beliefs, intentions, etc.) of such collabora-
tion, whereas the focus of our model is describing practical
dialogues. Also, in these proposals, many details of what the
models would look like are not given. The SharedPlans for-
malism [9, 11], for example, does expressly model the adop-
tion of recipes (Select_Recipe, Select_Recipe_GR), but that
is as far as it goes. We believe that our model will prove
to be complementary to this formalism, with the remain-
der of problem solving acts either existing at some higher
level (e.g. adopt/abandon/evaluate-objective), being added
to the same recipe level (evaluate-recipe), or being part of
the unspecified Elaborate_Individual/Elaborate_Group pro-
cesses.

Our belief that human-machine interaction can occur most
naturally when the machine understands and does problem
solving in a similar way to humans is very close to the philos-
ophy upon which the COLLAGEN project [16] is founded.
COLLAGEN is built on the SharedPlan formalism and pro-
vides an artificial language, human-computer interface with
a software agent. The agent collaborates with the human

through both communication and observation of actions.
COLLAGEN, as it works on a subset of the SharedPlans
formalism, also does not explicitly model most of our prob-
lem solving acts.

Several dialogue systems have divided intention recogni-
tion into several different layers, although these layerings are
at much different levels than our own. Ramshaw [14] ana-
lyzes intentions on three levels: domain, exploration, and
discourse. Domain level actions are similar to our own do-
main level. The discourse level deals with communicative
actions. The exploration level supports a limited amount of
evaluations of actions and plans. These, however, cannot be
directly used to actually build up a collaborative plan, as
they are on a stack and must be popped before the domain
plan is added to.

Lambert and Carberry [10] also had a three level model,
consisting of domain, problem solving, and discourse levels.
Their problem solving level was fairly underdeveloped, but
consists of such recipes as Build_Plan and Compare_Recipe_-
by_Feature (which allow the comparison of two recipes on
one of their features). The model does not include other
of our problem solving acts, nor does it explicitly model
collaboration, interaction acts, etc.

These models assumed a master-slave collaboration paradigm,

where an agent must automatically accept any proposal from
the other agent. Chu-Carroll and Carberry [2] extended the
work of Lambert and Carberry, adding a level of proposal
and acceptance, which overcame the master-slave problem.
However, Chu-Carroll and Carberry (along with Ramshaw
and Lamber and Carberry), assume a shared, previously-
specified problem solving plan which is being executed by
the agents in order to collaborate. This restricts collabora-
tion to homogeneous agents which have identical problem
solving plans, whereas in our model, there is no set prob-
lem solving plan, allowing agents with different individual
problem solving strategies to collaborate.

Finally, Elzer [4] specifically mentions the need for a problem-

solving model in discourse, citing dialogue segments similar
to those that we give. However, she offers no proposal of a
solution.

8. CONCLUSIONS

The collaborative problem solving model presented in this
paper offers a concrete proposal for modeling collaboration
between agents, including in particular between human and
software agents. Our model is based on our experience
building collaborative systems in several problem solving do-
mains. It incorporates as many elements as possible from
formal models of collaboration, but is also driven by the
practical needs of an implemented system.

9. ACKNOWLEDGMENTS

This material is based upon work supported by Dept. of
Education (GAANN) grant no. P200A000306; ONR re-
search grant no. N00014-01-1-1015; DARPA research grant
no. F30602-98-2-0133; NSF grant no. EIA-0080124; and
a grant from the W. M. Keck Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the above-mentioned organizations.

10. REFERENCES

[1] J. Allen, G. Ferguson, and A. Stent. An architecture
for more realistic conversational systems. In
Proceedings of IUI-2001, Santa Fe, NM, January 14-17
2001.

[2] J. Chu-Carroll and S. Carberry. Conflict resolution in
collaborative planning dialogues. International Journal
of Human-Computer Studies, 53(6):969-1015, 2000.

[3] P. Cohen and H. Levesque. Intention is choice with
commitment. Artifical Intelligence, 42:213-261, 1990.

[4] S. Elzer. The role of user preferences and
problem-solving knowledge in plan recognition for
expert consultation systems. In Working Notes of the
IJCAI-95 Workshop on The Next Generation of Plan
Recognition Systems, pages 37—41, Montreal, Canada,
1995.

[5] G. Ferguson, J. Allen, N. Blaylock, D. Byron,

N. Chambers, M. Dzikovska, L. Galescu, X. Shen,

R. Swier, and M. Swift. The Medication Advisor
project: Preliminary report. Technical Report 776, CS
Dept., U. Rochester, May 2002.

[6] G. Ferguson and J.F. Allen. TRIPS: An integrated
intelligent problem-solving assistant. In Proceedings of
AAAI-98, pages b67-573, Madison, WI, 28-30 July
1998.

[7] M.P. Georgeff. Actions, processes, and causality. In
Proceedings of the Workshop on Reasoning about
Actions and Plans, Los Altos, CA, 30 June—2 July
1986.

[8] B. Grosz and C. Sidner. Attention, intention, and the
structure of discourse. Computational Linguistics,
12(3):175-204, 1986.

[9] B.J. Grosz and S. Kraus. Collaborative plans for
complex group action. Artificial Intelligence,
86(2):269-357, 1996.

[10] L. Lambert and S. Carberry. A tripartite plan-based
model of dialogue. In Proceedings of ACL-91, pages
47-54, Berkeley, CA, June 1991.

[11] K.E. Lochbaum. A collaborative planning model of
intentional structure. Computational Linguistics,
24(4):525-572, 1998.

[12] J. McCarthy. First order theories of individual
concepts and propositions. In J.E. Hayes, D. Michie,
and L.I. Mikulich, editors, Machine Intelligence,
volume 9, pages 129-174. Ellis Horwood, Chichester,
England, 1979.

[13] M.E. Pollack. The uses of plans. Artificial Intelligence,
57, 1992.

[14] L.A. Ramshaw. A three-level model for plan
exploration. In Proceedings of ACL-91, pages 39—46,
Berkeley, CA, June 1991.

[15] A.S. Rao and M.P. Georgeff. An abstract architecture
for rational agents. In Proceedings of KR-92, pages
439-449, Boston, MA, 25-29 October 1992.

[16] C. Rich and C.L. Sidner. COLLAGEN: A
collaboration manager for software interface agents.
User Modeling and User-Adapted Interaction,
8(3-4):315-350, 1998.

[17] D.R. Traum. A Computational Theory of Grounding
in Natural Language Conversation. PhD thesis, CS
Department, U. Rochester, December 1994.

