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ABSTRACT 

An innovative task learning system called PLOW 

(Procedure Learning On the Web) lets end-users teach 

procedural tasks to automate their various web activities. 

Deep natural understanding and mixed-initiative interaction 

in PLOW makes the teaching process very natural and 

intuitive while producing efficient/workable procedures. 

INTRODUCTION 

The web has become the main medium for providing 

services and information for our daily activities at home or 

work. Many web activities involve the execution of a series 

of procedural steps involving Web-browser actions. 

Programmatically automating such tasks to increase 

productivity is feasible but out of reach for many end users. 

Programming-by-demonstration (PBD) is an innovative 

paradigm that can enable novice users to build a program 

by just showing a computer what a user intends to do [3]. 

However, in this approach, numerous examples are often 

needed for the system to infer a workable task. 

We aim to build a system with which a novice user can 

teach tasks by using a single example without requiring too 

much or too specialized work from the novice user. This 

goal poses significant challenges because the observed 

sequence of actions is only one instance of a task to teach 

and the user’s decision-making process that drives his/her 

actions is not revealed in the demonstration. 

To achieve this challenging goal, we have developed a 

novel approach in which a user not only demonstrates a task 

but also explains the task with a play-by-play description. 

In the PLOW system, demonstration is accompanied by 

natural language (NL) explanation, which provides the 

system with useful information to identify the following 

key aspects in building complex task models: (i) the goal of 

the task; (ii) the hierarchical structure including the 

boundary of (nested) iterations; (iii) parameter 

identification; and (iv) control constructs and conditions. 

The power of NL makes it possible for PLOW to infer a 

task structure that is not easily inferable from observations 

alone but represents what the user intended. Furthermore, 

the semantic information encoded in NL enables PLOW to 

reliably identify objects in dynamic HTML files. 

Another key aspect that makes PLOW more efficient is the 

mixed-initiative interaction that dramatically reduces the 

complexity of teaching a task by proactively initiating 

execution for verification and asking timely questions to 

solicit necessary information to build the task. In this 

position paper, we briefly introduce and discuss the 

challenges, innovations and lessons in developing the 

PLOW system. Refer to [1, 2, 5] for detailed information. 

PLOW ARCHITECTURE & INTERFACE 

PLOW is an extension to TRIPS [4], a dialogue-based 

collaborative problem solving system that has been applied 

to many real world applications. The core components of 

TRIPS include a speech recognition system, a robust 

parsing system, an interpretation manager (IM), an 

ontology manager (OM), and a surface generator. In 

PLOW, TRIPS supports deep natural language 

understanding and dialogue management. 

Figure 1 shows a high-level view of the PLOW system. At 

the center lies a CPS (Collaborative Problem Solving) agent 

that computes the most likely intended intention in the 

given problem-solving context (based on the interaction 

with IM in TRIPS). CPS also coordinates and drives other 

parts of the system to learn what a user intends to build as a 

task and invoke execution when needed. 

 

Figure 1: PLOW Architecture 
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Figure 2: The PLOW Interface 

While the core reasoning modules of PLOW are 

domain/application-independent, PLOW focuses on tasks 

that can be performed within a web browser. Figure 2 

shows PLOW’s user interface. The main window on the left 

is the Firefox browser instrumented so that PLOW can 

monitor user actions and execute actions for learned tasks. 

On the right is a GUI that summarizes a task under 

construction, highlights steps in execution for verification, 

and provides tools to manage learned tasks. A chat window 

at the bottom shows speech interaction and the user can 

switch between speech and keyboard anytime. 

TEACHING WEB TASKS WITH PLAY-BY-PLAY 

Primitive Actions and Dynamic Web Objects 

Consider a case in which a user is teaching PLOW how to 

find hotels near an address. At one step, a user would say, 

“Put the city here” and type a city name into a text field 

named “City”. Here, the observed action from the browser 

instrumentation is an action that fills a text (e.g., 

“Pensacola”) into a text field. However, the result of 

language understanding provides PLOW useful information 

that can be used to generalize the observed action instance. 

First, the user description gives a semantic concept for the 

object in the current action (i.e., *CITY). The semantic 

information is useful in generalizing the action. For 

instance, if a full address was given earlier and the typed 

city name matches a city part of the full address, PLOW can 

encode their dependency relation into the current task.  

Second, the semantic description helps PLOW to find 

dynamic web objects in future execution. In PLOW, each 

web page is logically represented by its DOM (Document 

Object Model), a tree-structured object model of the screen 

content, and the instrumentation accesses and manipulates 

the underlying DOM nodes. In demonstration, from the 

DOM tree structure of a web page, PLOW (i) finds a 

reference node with a text that is closest to the semantic 

concept of the action object or its ontological/linguistic 

variation (e.g., town, municipality, etc.) and (ii) computes 

the relation between the reference node and the node for the 

object accessed in the observed action.  

In execution, PLOW looks for a reference node based on 

the method in (i) and finds the node for the object to be 

acted upon with the relation computed in (ii). Therefore, 

even when there is a web page format change, this approach 

enables PLOW to find a node as long as there’s no 

significant local change around the node in focus. Refer to 

[2] for detail. 

Task Hierarchy 

PLOW uses simple heuristics to identify the beginning/end 

of a sub task. Any statement that explicitly identifies a goal 

(e.g., “Let me show you how …”) is seen as the beginning 

of a new (sub) task. User’s explicit statement such as “I’m 

done” or another goal statement indicates the end of the 

current (sub) task. Our anecdotal experience is that users 

easily get familiar with this intuitive teaching style. 

Parameter Identification 

Identifying parameters is challenging even for a simple task 

and it is almost impossible with only a single observation 

without special domain knowledge. When an object is used 

in a task, the system should determine if it is a constant or a 

variable. In the case of a variable, it also has to figure out 

the relation between variables. Figure 3 shows how natural 

language plays a critical role in PLOW’s parameter 

identification, enabling it to identify parameters from a 

play-by-play single demonstration. Furthermore, TRIPS’ 

reference resolution capability also identifies the relation 

between parameters: e.g., after saying, “Select a check-in 

date here”, if a user says “Put the date”, the reference 

resolution considers both dates are equal. 

Control Constructs 

Conditionals 

Conditionals have a basic structure of ‘if X, then do Y’, 

optionally followed by ‘otherwise do Z’. However, the 

action trace for conditionals includes only one action, either 

Y or Z, based on the truth-value of the condition X. In 

general, identifying X is very difficult, since the entire 

Utterance 

(Action) 

Interpretation Key features 

hotels ! 

output 

- Bare plural 

- Object of an 

information producing 

action “find” 

Let me show you 

how to find hotels 

near an address 

an address ! 

input 

- Indefinite 

- No decision action 

Put hotels (Type 

“hotels”) 

Hotels ! 

constant 

- Bare plural 

- Identical to the typed 

text in the action 

Put the zipcode 

(Type “32502”) 

a zipcode ! 

related to the 

address  input 

- Definite 

- Zipcode is a role of an 

address in Ontology 

Figure 3: Interpretation of Noun Phrases 
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Figure 4: Learning Iterative Steps 

context of demonstration should be checked and reasoned 

about. However, in the play-by-play demonstration, when a 

user specifies a condition, PLOW can interpret correctly the 

condition from language. 

Iteration 

The main difficulty in identifying iterative procedures from 

a single example is that the action trace (a sequence of 

actions) alone does not fully reveal the iterative structure. 

For iteration, a system needs to identify these key aspects: 

(i) the list to iterate over; (ii) what actions to take for each 

element; (iii) how to add more list elements; and (iv) when 

to stop. For a system to reason about these aspects on its 

own, in addition to repetitive examples, full understanding 

of the action context (beyond observed actions) and special 

domain knowledge will be required (e.g., what and how 

many list items were potentially available, which ones were 

included in the observed actions, how and when web page 

transition works, etc.). Furthermore, a user would not want 

to demonstrate lengthy iterations. In PLOW, natural 

language again plays a key role. As shown below, we 

designed the system GUI and dialogue to guide a user 

through the demonstration for iteration: mixed-initiative 

interaction with proactive execution and simple queries 

makes the process much easier and intuitive. 

In Figure 4, a user is teaching PLOW how to find hotels 

near an address. When the user highlights a list of results 

(Figure 4a) and says, “Here is a list of results”, PLOW 

infers that an iteration over elements in the list will follow. 

Then, PLOW enters into an iteration-learning mode with 

the goal of identifying the key aspects stated above. First, 

by analyzing the DOM structure for the list object, PLOW 

identifies individual elements of the list and then presents 

the parsed list in a dedicated GUI window with each 

element (essentially a portion of the original web page) 

contained in a separate cell (Figure 4b). This GUI-based 

approach lets the user quickly verify the list parsing result 

and easily teach what to do for each element. Note that list 

and table HTML objects that contain the desired list may 

also be used for other purposes (e.g., formatting, inserting 

ads, etc.), so it is fairly common that some irrelevant 

information may appear to be part of the list; PLOW uses 

clustering and similarity based techniques to weed out such 

information. 

After presenting the parsed list, PLOW waits for user’s 

demonstration for an element. For instance, the user says, 

“This is the hotel name”, and highlights the hotel name in 

one of small cells in the GUI (Figure 4c). Given this 

information, PLOW learns the extraction pattern and 

proactively applies the rule to the rest of elements (Figure 

4d). Note that a composite action (e.g., navigating to a page 

from a link, extracting data from the new page and so on) 

can be also defined for each element. If there is an error, the 

user can notify PLOW with the problem by saying, “This is 

wrong”, and show a new example. Then, PLOW learns a 

new extraction pattern and reapplies it to all list elements 

for further verification. This correction interaction may 

continue until a comprehensive pattern is learned. 

Next, the user teaches PLOW how to iterate over multiple 

lists by introducing a special action (e.g., “Click the next 

link for more results” – see Figure 4e). This helps PLOW to 

recognize the user’s intention to repeat what he/she 

demonstrated in the first list on other lists. Here, to identify 

the duration of the iteration, PLOW asks for a termination 

condition by saying, “When should I stop searching?” For 

this query, it can understand a range of user responses such 

as “Get two pages,” “Twenty items”, “Get all” and also 

conditions based on information extracted for each element, 

as in “Until the distance is greater than 2 miles”. In the 

case of getting all results, the system also asks for how to 

recognize the ending, and the user can tell and show what to 

check (e.g., “When you don’t see the next link” or “When 

you see the end sign”). For verification, PLOW executes the 

learned iterative procedure until the termination condition is 

satisfied and presents the results to the user using the 

special GUI. The user can sort and/or filter the results with 

certain conditions (e.g., “sort the results by distance”,  

“keep the first three results”, etc.). 

UTILIZING & IMPROVING TAUGHT WEB TASKS 

Persistent and Sharable Tasks 

After teaching a task, a user can save the task into a 

persistent repository. Figure 5 shows the “Saved Tasks” 

panel in the PLOW interface that shows a list of a user’s 

private tasks. A pop-up menu is provided for task 

 
Figure 5: Task Management 
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management, and one of its capabilities is exporting a task 

to a public repository for sharing the task with others. A 

user can import shared tasks from the “Public Tasks” panel. 

Task Invocation 

Tasks in the private repository can be invoked through the 

GUI  (Figure 5) or in natural language (e.g., “Find me 

hotels near an airport”). If the selected task requires input 

parameters, PLOW asks for their values (e.g., “What is the 

airport?”), and the user can provide parameter values using 

the GUI or natural language. Users can invoke a task and 

provide input parameters in a single utterance, e.g., “Find 

me hotels near LAX” or “Find me hotels near an airport. 

The airport is LAX.” Results can also be presented via the 

GUI or in natural language. This NL-based invocation 

capability allows users to use indirect channels, as well. For 

example, we built an email agent that interprets an email 

subject and body so that a user can invoke a task by sending 

an email and receive the execution results as a reply.  

Here, given a user request, PLOW finds a matching task 

with its natural language understanding and ontological 

reasoning capabilities. A user does not necessarily have to 

use the same task description used in teaching. “Get me 

restaurants in a city” or “Look for eatery in a town” would 

select a task to find restaurants in a city. 

Reusing Tasks 

In teaching a task, existing tasks can be included as 

subtasks. When a user gives the description of a new step, 

PLOW checks if the step matches one of the known tasks; 

if a matching task is found, it is inserted as a subtask with 

parameter binding between the current task and the reused 

task. For instance, in one teaching session, a user has taught 

how to book a flight and wants to reserve a hotel. For a step 

introduced by saying, “Book a hotel for the arrival date”, 

PLOW will check for a matching task for the step. If the 

user already has a task to reserve a hotel with a check-in 

date and a number of nights, PLOW will mark the step as 

reusing another task so that, in execution, the reused task 

can be called. PLOW will also infer that the arrival date 

should be bound to the check-in date and consider the 

number of nights as a new input parameter if there is no 

related object in the current task. 

Editing Tasks 

To fix obsolete tasks (e.g., to update them after web site 

changes) or to improve/simplify a task, PLOW lets a user 

add or delete steps. To reach a step to edit, PLOW supports 

(i) step-by-step execution (the default mode for 

verification) and  (ii) partial execution up to a certain step. 

Figure 6 shows a GUI snapshot in which highlighted steps 

are the ones to be executed next. One can invoke the two 

modes by saying, “Let’s practice step by step” and “Execute 

the task up to this step” (after clicking a step in the GUI) 

respectively. Setting up the action context (i.e., browser 

setting, extracted objects, available parameter values, etc.) 

with real execution is critical since the context is used in 

PLOW’s reasoning for the action to edit. 

Improving Tasks from Execution Failure 

Execution failure from unnecessary or missing steps can be 

corrected by task editing. Major web site redesigns will 

sometimes trigger web object identification failures. When 

PLOW detects an execution error, it stops at the failed 

action, notifies the user and initiates a debugging process by 

asking for a new example from which it learns an additional 

extraction pattern. 

EVALUATION 

In 2006 and 2007, PLOW was evaluated along with other 

task building systems by an independent agency as a part of 

DARPA CALO project [6]. PLOW did very well in both 

tests, receiving a grade of  2.82 (2006) and 3.27 (2007) out 

of 4 (exceeding the project goals in both cases). 

Furthermore, PLOW was the system of choice among the 

subjects, and anecdotal comments from the subjects in 2007 

were that PLOW’s user convenience has significantly 

improved with more GUI/NL feedback in its interface. 

CONCLUSION WITH BOOK CHAPTER SUGGESTION 

PLOW demonstrates that NL is a powerful intuitive tool for 

end-users to build web tasks with significant complexity 

using only a single demonstration and the mixed-initiative 

interaction also makes the task building process much more 

convenient and intuitive. For the proposed book, we plan to 

provide more detailed description for PLOW, focusing on 

the NL aspects and the use of a GUI that provides intuitive 

views of the task structure during learning. 
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            (a) step-by-step                     (b) partial execution 

Figure 6: Current Task Execution Status during Editing 


